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Abstract

The natural convection in long inclined cavities with di�erentially heated end walls is analytically and numerically

studied. The dimensionless axial temperature gradient at the core region, K, is calculated and it is used to determine the

frontiers of the ¯ow regimes (conductive, transition and boundary layer regimes) in the space of parameters. For

horizontal cavities �a � 90°� these frontiers have been found at A2Ra ' 102 and A2Ra ' 104, and con®rm the results of

B. Boehrer (Convection in a long cavity with di�erentially heated end walls, Int. J. Heat Mass Transfer 40 (17) (1997)

4105±4114). For 0 < a < 90° (heated-from-below cavities) the frontiers are found at values of the group parameter

ARa cos�a�=R0 of order 1 and 10. If the cavity is heated from above the ¯ow always remains in the conductive regime if a
is made large enough (typically a > 100°�. The boundary layer regime (BLR) for a < 90° is also studied. If the cavity is

inclined, no stagnant region is formed at the center of the core, but instead a region with approximately constant shear.

In the BLR, the maximum cross-stream and axial velocities scale, respectively, with Ra1=4 and Ra4=7 and the transport of

heat in the core, governed by the axial advection, grows like Nu � Ra2=7. Numerical calculations of the ¯ow in a closed

geometry carried out by a Chebyshev-collocation method con®rm the theoretical predictions and are used to investigate

the structure of the ¯ow at large Rayleigh number. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of natural convection in shallow inclined

cavities driven by end-to-end temperature di�erence is

applied in di�erent domains of industry and nature. For

instance, in crystal growth processes from melts, larger

transport rates are obtained by tilting the ampoule [2].

This fact has motivated some experimental and numer-

ical simulations of the hydrodynamic aspects of crystal

growth processes in tilted ampoules with axial heating

[3]. Also in heat exchangers it has been proved that the

heat transfer is enhanced when the tube is optimally

inclined [4]. Another application of the inclined con®g-

uration is to honeycomb solar collector plates, where the

low aspect ratio enclosure may be thought of as a single

cell of the honeycomb structure [5,6]. The study of

natural convection in tilted shallow ¯uid layers is also

relevant in many geophysical situations where the ¯uid

is enclosed in long narrow slots arbitrarily inclined to

gravity [7,8]. A particular important example of appli-

cation in this ®eld is the study of the transport rate of

spread of passive contaminants such as radioactive

materials in long tilted liquid ®lled rock fractures [7].

Concerning fundamental research, the inclined con®gu-

ration is a simple system which allows the study of

several types of instabilities and their corresponding

interactions by making a suitable choice of the values of

the external parameters. This was revealed by theoretical

and numerical studies on the stability of the base ¯ow in

this particular con®guration [9]. Also recent experiments

on natural convection in cavities with axial and lateral

heating have used tilted geometries to study the inter-

action between longitudinal and transversal instabilities

[10]. The stability thresholds depend on the local Ray-

leigh number at the core region and to correctly predict

the onset of the instabilities it is necessary to know the

value of the axial temperature gradient at the core.

In the extensive literature on horizontal cavities (see

[1] for a chronological review of the problem), the
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parameter K, de®ned as the ratio of the axial tempera-

ture gradient at the core region and the overall axial

temperature gradient was one of the principal motiva-

tions and was used to distinguish between three unicel-

lular ¯ow regimes ordered in increasing Ra: the

conductive regime �K � 1�, the transition regime

�0 < K < 1� and the boundary layer (or convective) re-

gime �K � 0�. The ¯ow at large Ra has been another of

the principal motivations of previous works concerning

the horizontal case. The pioneer theoretical study of Gill

[11] and the work of Patterson and Imberger [12] gave

the basis for the understanding of this problem. In [12] it

was shown by order of magnitude analysis that di�erent

scalings of the ¯ow quantities were needed for the limits

of Pr < O�1�; Pr P O�1� and A � O�1�; A < O�1�. The

low Pr range was studied by several authors [13±15]. In

particular, in [15], numerical calculations for a wide

range of Pr showed that for 16 Pr6 100 the ¯ow

quantities vary in less than about 10%, indicating that if

convection of momentum is small (i.e., for Pr P O�1�)
the Prandtl number has a minor in¯uence on the heat

and mass rates. For ¯uids with Pr P O�1� at large Ra,

Gill [11] and Patterson and Imberger [12] showed that

the generation of vorticity and the heat discharge occur

near the isothermal walls at thermal boundary layers of

thickness dz ' Raÿ1=4H . In the core the axial tempera-

ture gradient is vanishingly small �K ' 0� and, therefore,

if the cavity is horizontally placed the buoyancy forces

are absent. As a consequence, a stagnant region is

formed at the center part of the layer and the ¯ow at the

core occurs only as a result of the entrainment of mass

from the vertical boundary layers being con®ned in thin

intruding ¯owing layers near the horizontal walls.

Patterson and Imberger [12] were the ®rst to claim that

the heat and vorticity balances in the horizontal

boundary layers for Ra > Aÿ12 (i.e., for squared cavities)

should di�er from those occurring if Ra < Aÿ12 (i.e., for

long cavities). For long cavities �A < 1� the discharge of

heat through a cross-section at the core deviates from

the discharge at the isothermal wall due to conductive

loss of heat outside the horizontal boundary layer.

Patterson and Imberger studied the case Pr P O�1� and

A � O�1� and their conclusions were con®rmed later

[16]. Recently, Boehrer [1] studied the case Pr P O�1�
and A < 1. This author considered that in the horizontal

boundary layers, the vorticity production of buoyancy is

balanced by di�usion along the cross-stream direction

and that the di�usive loss of heat is balanced by ad-

vection. Using this assumption, an estimation for the

thickness of the horizontal boundary layers was ob-

tained �3:2�A2Ra�ÿ1=5H� which ®tted quite well with the

previous experimental and numerical calculations.

Notation

A aspect ratio, H=L
F function associated to the heat ¯ux

advected from the core, Eq. (15)

g gravity acceleration

H width of the cavity (x-direction)

K dimensionless axial temperature gradient

at the core

L length of the cavity (z-direction)

Nu Nusselt number

NuR reduced Nusselt number, Eq. (35)

Mw;Mt functions for the dependence on a of

respectively, Wmax and Hx

r core ¯ow pro®le parameter

Pr Prandtl number, m=j
r0 lowest non-trivial solution of tan�r��

tanh�r� � 0; r0 ' 2:365

R0 critical Rayleigh number for convection

in an in®nite vertical cavity, 2r4
0

Ra Rayleigh number, gbDTH 3=mj
T dimensionless temperature

DT dimensional temperature di�erence

between the end walls

R group parameter, ARa cos�a�=R0

v � �u;w� dimensionless velocity (along x- and

z-direction)

Umax;Wmax maximum dimensional velocities along

x- and z-directions

x; z coordinates along cross-stream and axial

directions, respectively.

Greek symbols

a inclination respect vertical position, [°]

b coe�cient of thermal expansion

d match parameter in the Bejan and Tien's

model

dx thickness of the intruding ¯ow layers at

the side walls, �jL=Wmax�1=2

dz thickness of the end wall thermal

boundary layer, �jH=Umax�1=2

j thermal di�usivity

k distance of the maximum axial velocity

to the nearest side wall

m cinematic viscosity

q ¯uid density

Hx dimensional temperature di�erence

along the side walls at the core

x vorticity

Subscripts

I value of the Rayleigh number at the

thermal inversion

c core ¯ow solution

1948 R. Delgado-Buscalioni, E. Crespo del Arco / International Journal of Heat and Mass Transfer 44 (2001) 1947±1962



Boehrer also obtained the frontiers of the ¯ow regimes

in long horizontal cavities at A2Ra � 102 and RaA2 � 104.

The investigation about the e�ect of inclined

boundaries on the unicellular ¯ow in cavities with end-

to-end temperature di�erence is relatively much more

scarce. Previous studies presented numerical calculations

of the Nusselt number [2,5,6,17]. In some of these works

[5,6,17], rather complicated multi-parametric empirical

®ts for the Nusselt number were proposed. A greater

amount of work was devoted to a related problem: in-

clined cavities with A > 1. In these works, empirical ®ts

for the Nusselt number were also proposed (see for in-

stance [18,19]). Nevertheless, in the literature we have

not found any results concerning the identi®cation of the

di�erent ¯ow regimes in the extended space of par-

ameters �Ra;A; a�.
This work investigates the unicellular ¯ow regimes in

cavities whose longest axis �A < 1� is arbitrarily inclined

and di�erentially heated between its ends. We consider

Pr P O�1� and long cavities �A < 1� in the sense of

Patterson and Imberger [12]. First, a solution for the

parallel core ¯ow is presented and discussed. Then the

parameter K is calculated by means of an integral

model similar to that proposed by Bejan and Tien [20].

Once K is calculated, the frontiers of the ¯ow regimes

are determined in the extended space of parameters

�Ra;A; a�. The last part of the study concerns the large

Ra limit of the ¯ow (the boundary layer regime). The

¯ow near the end walls and the ¯ow at the core are

separately analyzed. An order of magnitude analysis is

used to obtain an analytical expression for the Nusselt

number in the boundary layer regime (BLR) in terms of

Ra, A and a. The theoretical predictions have been

validated by numerical calculations of the ¯ow carried

out for Pr � 0:7 and Pr � 6:7 and di�erent aspect ratios.

The prediction on the Nusselt number at large Ra has

also been con®rmed by the results reported by Wirtz

and Tzeng [5,6].

2. Geometry and equations of motion

The geometry of the problem is shown in Fig. 1 for

horizontal cavities, 1. It consists of a two-dimensional

cavity with A � H=L < 1 ®lled with an incompressible

¯uid. The cavity is inclined at an angle a with respect to

the gravity vector, g � g�sin�a�îÿ cos�a�k̂�. A tempera-

ture di�erence, DT , is maintained between the end walls

and the side walls are adiabatic. Using the Boussinesq

approximation and H ; H 2=j, j=H and DT , respectively,

as units of length, time, velocity and temperature, the

dimensionless equations written in terms of the vorticity

and the temperature are

1

Pr
ox
ot

�
� v � rx

�
�r2x�Ra

oT
oz

sin�a�
�

� oT
ox

cos�a�
�
;

�1�

oT
ot
� v � rT � r2T ; �2�

where the vorticity is de®ned as

x � ou
oz
ÿ ow

ox
�3�

and the Rayleigh number and the Prandtl number are,

respectively, de®ned as, Ra � gbDTH 3=mj and Pr � m=j.

The walls are rigid and the no-slip condition is assumed.

The thermal boundary conditions are

oT
ox
� 0 at x � 0; 1; �4�

T �x; 0� � 0; T �x;Aÿ1� � ÿ1: �5�

3. The parallel ¯ow at the core

For 0° < a < 90° the mechanical equilibrium is not

possible and for any DT > 0 a convective ¯ow is estab-

lished. The basic structure of the ¯ow is similar to the

¯ow in an horizontal cavity [21]. Two ¯ow regions may

be distinguished: the core region, containing a parallel

clockwise ¯ow and the end regions near the closing

walls, where the parallel ¯ow turns around. The velocity

and temperature pro®les of the parallel ¯ow in the core

region have the following form:

Fig. 1. Geometry of the problem.
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vc � wc�x�k;
Tc�x; z� � ÿKAz� Ksc�x� � b;

�6�

where b is a constant temperature and ÿKA is the di-

mensionless temperature gradient in the core. A system

of ordinary di�erential equations for wc�x� and sc�x� is

obtained by substituting Eq. (6) into Eq. (2) and into the

curl of Eq. (1). This system has three di�erent types of

solutions depending on the projection of the overall

temperature gradient to the gravity vector

· Lateral heating: a � 90°

wc�x� � KARa x3=6
ÿ ÿ x2=4� x=12

�
; �7�

sc�x� � KA2Ra x5=120
ÿ ÿ x4=48� x3=72

�
: �8�

· Heating from below: 0° < a < 90°

wc�x� � tan a
2r�sin r sinh�rx̂� ÿ sinh r sin�rx̂��

sinh r cos r � cosh r sin r

" #
;

�9�

sc�x� � A
tan a

2
x̂

"
ÿ sin r sinh�rx̂� � sinh r sin�rx̂�

r sinh r cos r � cosh r sin r� �

#
:

�10�

· Heating from above: 90° < a < 180°

wc�x�

� tan a
4r�cosh r sin r sinh�rx̂� cos�rx̂� ÿ sin r cos r cosh�rx̂� sin�rx̂��

sinh r cosh r � sin r cos r

" #
;

�11�

sc�x�

� A
tan a

2
x̂

"
ÿ sinh r cos r sinh�rx̂� cos�rx̂� � cosh r sin r cosh�rx̂� sin�rx̂�

r sinh r cosh r� sin r cos r� �

#
:

�12�

In Eqs. (9)±(12) we have used x̂ � 2xÿ 1 and the

parameter

r � 1

2
KARa cos a� �1=4

for a < 90°;

r � 1

2
���
2
p � ÿ KARa cos a�1=4

for a > 90°;
�13�

where KARa is the local Rayleigh number at the core

region scaled with the axial temperature gradient at the

core.

As seen in Eq. (1), the production of vorticity due to

the x and z components of buoyancy are, respectively,

proportional to Ra sin�a�oT=oz and Ra cos�a�oT=ox. The

temperature x-gradient is created by the ¯ow advection

and at low enough values of Ra it is negligibly small.

Therefore, at small Ra and for any (not vertical) incli-

nation the clockwise ¯ow is generated by the x compo-

nent of buoyancy. As Ra increases, a negative

temperature x-gradient grows in the core by advection

and generates vorticity owing to the z component of

buoyancy. When heating from above �a > 90°� the e�ect

of the axial buoyancy is to suppress the clockwise con-

vection in the center part of the layer, as long as

Ra cos�a�oT=ox < 0 while Ra sin�a�oT=oz > 0. For large

enough Ra and a > 90°, the ¯ow is con®ned to small

regions near the walls where oT=ox � 0 as may be seen

in Fig. 2. For a < 90°, the production of vorticity of

both components of buoyancy has the same sign and the

Fig. 2. Core ¯ow pro®les for a � 120°. The numbers indicate values of the Rayleigh number at the core, KARa.
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intensity of the ¯ow increases with the cross-stream

temperature gradient. In turn, the cross-stream tem-

perature di�erence grows also with the ¯ow intensity.

Hence, for a < 90°, the coupling of the velocity and

temperature ®elds acts as a positive feedback that

steeply enhances the ¯ow convection as Ra increases.

This kind of coupling leads to the divergence of the

amplitude of the core ¯ow solution (in Eqs. (9) and (10))

at a ®nite value of the local Rayleigh at the core: 1

KARa � R0 cos�a�, where R0 � 500:54. This anomalous

behavior of the core ¯ow solution has been also reported

in previous studies on natural convection with two

components of the buoyancy force [7,22]. Flow proper-

ties as stability [22] or mass transport [7] were studied for

values of KARa below and above the divergence value.

These works considered the limit of in®nite cavities

�A! 0� and assumed that KARa was a ¯ow indepen-

dent parameter. Although, for an in®nite horizontal

cavity the equality K � 1 holds [20,21], and therefore,

KARa may be considered to be ¯ow independent, we

shall show by considering the ¯ow at the end walls of the

cavity, that for 0° < a < 90° the value of KARa is

bounded by R0= cos�a� for any arbitrarily small value of

A. This means that the divergence of the core pro®les is

not to be observed and therefore the solutions Eqs. (9)

and (10) have no physical meaning for KARa >
R0= cos�a�.

The value of R0 is precisely the critical Rayleigh

number for the onset of transversal perturbations in an

in®nite vertical cavity [22]. At KARa cos�a� ! R0, the

functional form of core pro®les for a < 90° coincides

with the critical transversal disturbance for the onset of

convection in the vertical cavity [22]. This can be seen

by considering the Laurent series of Eqs. (9) and (10)

at r � r0. In particular, for the axial velocity, one

obtains

wc�x� � tan a
2r0 tan�r0�
�r ÿ r0�

� �
sinh�r0x�
cosh�r0�

�
� sin�r0x�

cos�r0�
�

�O�r ÿ r0�0: �14�

4. Calculation of K

The parallel ¯ow solution proposed for the core re-

gion in Eqs. (6)±(12) does not satisfy the boundary

conditions at the end walls. These conditions must be

satis®ed by a solution for the end regions that match to

the ¯ow at the core. The parameters K and b are cal-

culated using the matching conditions. Several methods

are proposed in the literature [13,20,21]. We have used

the method proposed by Bejan and Tien [20] which is a

di�usive approximation and consequently gives results

which are Pr-independent. Bejan and Tien's model as-

sumes equal thickness for the momentum and tem-

perature boundary layer at the end walls (which is

certain for Pr � O�1��, and as shown in previous works

[1,15,20] it gives correct results for moderate to high

Prandtl number.

The method consists of constructing a solution for

the turning regions that matches up to ®rst derivatives

the ¯ow at the core at a certain distance from the end

walls, d, that has to be also evaluated. The three equa-

tions needed to calculate K; b and d come out from the

centro-symmetry of the problem, T �1=2;Aÿ1=2� � ÿ1=2,

and from the two integral constraints obtained by inte-

grating twice (from x � 0 to x � 1 and from z � 0 to

z � d) the heat equation (2)) and the vorticity equation.

Using these constraints one obtains, for any given value

of a and A, the following relationships:

K�r� � 1

1� F �r�� � ;

with F �r� � d�r�
Z 1

0

wc�x�sc�x� dx; �15�

where F �r� is obtained from the core pro®les in Eqs.

(7)±(12) and d � d�r� is obtained from the centro-sym-

metry condition and the integrated vorticity equation.

Eq. (15) is, in fact, a system of transcendental equations

(note that r depends on K) and has been solved by a

Newton±Raphson method. Fig. 3(a) shows a plot of K

versus Ra for A � 0:1. Circles correspond to values of K

obtained from the numerical solution of the Navier±

Stokes and heat equations (see Section 8) in the ge-

ometry indicated in Fig. 1. The agreement with the

solution of Eq. (15), shown in Fig. 3(a) with solid lines,

is excellent for K > 0:1 and the aspect ratios considered

�A < 0:25�.
Eq. (15) for K comes out from the balance of the heat

advected from the core and di�used at the end region.

Any increase in the amount of heat advected from the

core increases the di�usion rate and consequently the

temperature drops at the end region, therefore reducing

the axial temperature gradient at the core, KDT=L, with

respect to the overall temperature gradient, DT=L. For

Ra! 0, the advection term in Eq. (17) vanishes and

K ! 1. The behavior of K at large Ra depends on the

inclination angle. When heating from above, a > 90°,

the advection of heat decreases for Rayleigh number

larger than a certain value and K reaches a minimum

value as seen in Fig. 3(a). For a6 90°, the amount of

heat advected from the core increases monotonically

with Ra and K tends to zero. At large enough Ra, when

advection becomes dominant, we have observed that, in

the horizontal cavity, K decreases approximately like

1 Formally, the divergence of the core ¯ow solution occurs

for discrete values of r which satisfy tanh�r� � tan�r� � 0. The

lowest value is r � r0 � 2:365 and R0 � 2r4
0 (see Eq. (13)).
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10�A2Ra�ÿ1=2
in agreement with the result of Boehrer [1].

For a < 90° we have found the following trend for K:

K ! R0

ARa cos�a� for Ra!1: �16�

Eq. (16) implies that the local Rayleigh number at the

core, KARa, tends asymptotically to R0= cos a. This fact

can be seen in Fig. 3(b), where the local Rayleigh

number at the core KARa is plotted versus ARa. Note

that KARa never reaches the limit value for the diver-

gence of the parallel ¯ow solution, R0= cos a.

5. The frontier for the conductive regime

In the conductive regime (low Ra limit) the advection

of heat is negligible and heat is transported by conduc-

tion so the isotherms are nearly parallel to the x-axis and

K � 1. By introducing K � 1 into the relationship

K ' 10�RaA2�ÿ1=2
, one obtains the frontier proposed by

Boehrer [1] for the conductive regime, RaA2 � 102. Bejan

and Tien [20] found essentially the same frontier

�RaA2 � 72� by selecting a limiting value of the cross-

stream temperature di�erence at the core: Hx < 0:1DT .

Both criteria involve the group parameter RaA2. In fact,

as shown in [1], in horizontal cavities the group RaA2,

which measures the relative importance of horizontal

(along z) advection compared to vertical (along x)

conduction of heat, governs the type of ¯ow regime.

This is no longer valid in inclined cavities.

For a < 90°, the type of ¯ow regime is not controlled

by the group A2Ra but rather by R � ARa cos�a�=R0. In

particular, we have shown that in the transition regime

the parameter K decreases with Ra like K ' Rÿ1 so if

a < 90°, the conductive regime �K ' 1� exists for

R6O�1�. Considering that R0 is the critical Rayleigh

number for the onset of convection in a vertical in®nite

cavity, this result indicates that, in heated-from-below

inclined cavities, the transition to an advection domi-

nated ¯ow takes place when the axial projection of

buoyancy overpowers the thermal and viscous di�usion

along the z-axis.

When heating from above �a > 90°� the axial buoy-

ancy acts as a restoring force that tends to suppress

convection as long as cross-stream temperature di�er-

ences are created. Hence, in this con®guration it may

occur, depending on a and A, that the ¯ow remains in

the conductive regime no matter how large the value of

Ra is made. This fact is deduced from Fig. 3(a) which

shows that for a > 90° the value of K reaches a mini-

mum value. The calculation of K from Eq. (15) yields

that for a > 90° the value of K satis®es

K P
1

1� 0:190A tan2�a� aÿ 90°� �0:35
: �17�

Therefore, if for a particular con®guration the minimum

of K is approximately one, the ¯ow shall remain in the

conductive regime for any large value of Ra. As an ex-

ample, Eq. (17) indicates that in a cavity with A � 0:25

and a > 120° the value of K shall be always greater than

0:9. Eq. (17) shows also a classic result of Cormack et al.

[21]: in order to maintain the conductive regime at

Ra!1 in a horizontal cavity one has to choose it

in®nite, A! 0.

Fig. 3. (a) The parameter K against A2Ra. The dashed line for a � 90° corresponds to the result of Boherer [1]: K � �A2Ra�ÿ1=2
. The

dashed line for a � 50° corresponds to K � �ARa cos�a�=R0�ÿ1
. At (b) the local Rayleigh number at the core, KARa, versus ARa.
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6. The boundary layer regime

In this section, we consider the ¯ow at the large Ra

limit. At large Ra it may occur (if the value of a is low

enough, as shown afterwards) that almost all the tem-

perature drop is con®ned to small boundary layers near

the end walls leaving very small temperature z-gradient

at the core �K � 0�. In the horizontal case, it has been

also shown that intruding ¯ow layers are developed

along the x � 0; 1 walls. In order to determine the

frontier of the BLR in the horizontal case, it is possible

to use either a small limiting value of K or an argument

involving the thickness of the intruding layer. For in-

stance, Boehrer [1] calculated the frontier of the BLR by

considering that the thickness of the intruding layer,

3:2�A2Ra�ÿ1=5H , should be smaller than H=2: this yields

RaA > 104. Inserting this condition in the relationship

K � 10�RaA2�ÿ1=2
, one obtains K < 0:1, which is pre-

cisely the requirement used in the previous work of

Bejan and Tien [20] for the BLR presence. In inclined

cavities the assumptions that lead to the core pro®les in

Eqs. (9) and (10) break down also for small enough

values of K and, as shown below, the condition K < 0:1
is also representative of the processes involved at high

Ra.

Prior to presenting our ®ndings on the BLR for

inclined cavities it is necessary to specify the region in

which this type of regime can be observed. Eq. (17) in-

dicates that the BLR can only take place in heated-from-

below or nearly horizontal cavities. In particular, the

range of inclinations in which the condition K < 0:1 is

satis®ed, varies from a6 90° in an in®nite long cavity

�A! 0� to a < 93:5° in a nearly squared cavity of

A � 0:5. Therefore, without much loss of generality we

shall concern our study of the BLR of inclined cavities

to the a < 90° case. In Fig. 4, the values of A2Ra at

which K � 0:1 are plotted versus a for several values of

the aspect ratio. The circle placed at a � 90° and

A2Ra � 104 corresponds to the frontier for the BLR

found by Boehrer [1]. As seen in Fig. 4, as a! 90°, our

results recover the frontier for the horizontal case but,

for a < 90°, the frontier K � 0:1 is no longer determined

by the group A2Ra. Instead, considering that for

a < 90°;K ' Rÿ1, the requirement K < 0:1 is approxi-

mately ful®lled for R > 10. The dashed lines in Fig. 4

correspond to this approximation and ®t well with the

numerical results for a < 85°.

6.1. Flow near the end walls

In the inclined case �a > 0�, the generation of x-¯ow

near the boundaries occurs essentially in the same way

as in the horizontal case. The maximum value of the x-

velocity, Umax, is located at the thermal boundary layers

near the end walls and the x-¯ow is di�used towards the

center of the cavity to a distant of order of the viscous

layer thickness, O�Pr1=2dz�. The thermal layer thickness

can be derived from the balance of the advection along x

and conduction along z-direction

dz ' jH
Umax

� �1=2

: �18�

Let us estimate the magnitude of Umax for 06 a < 90°. In

an inclined cavity, a > 0, the production of vorticity due

to the x component of the buoyancy force at the thermal

boundary layer O�gbDT sin�a�=dz� is balanced by the

viscous di�usion of vorticity O�mUmax=d
3
z �. This balance

gives Umax � Ra sin�a��dz=H�2j=H . This reasoning is

similar to the order of magnitude analysis made by

Patterson and Imberger [12] for the horizontal case (see

also [11]) and gives Umax � Ra1=2. In the case of a low

aspect ratio vertical cavity �a � 0� the onset of convec-

tion takes place at Ra ' R0 and, for the Rayleigh num-

ber considered here �Ra > 10Aÿ1R0� the end wall

thermal boundary layers are yet developed. Hence, we

propose the following relationship for Umax in the large

Ra limit

Umax � c0� � c1 sin�a��1=2Ra1=2j=H : �19�
The thickness of the thermal boundary layer is by virtue

of Eq. (18)

dz=H � c0

�
� c1 sin1=2�a�

�ÿ1=2

Raÿ1=4; �20�

where c0 and c1 are independent of Ra; a and A. Re-

lationship (19 ) has been used to ®t the numerically

calculated values of Umax at several values of Ra; a and A

for Pr � 6:7. This furnished: c0 � 0:105� 0:005 and

c1 � 0:27� 0:03. In Fig. 5(a), the numerical results

Fig. 4. The condition K � 0:1 in the A2Ra±a space.
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(circles) are compared with Eq. (19) (dashed lines). For

cases lying in the range R > 10, Eq. (19) correctly re-

produces the numerical results but for those cases with

R < 10 (i.e., for large enough inclinations) the agree-

ment is poor. Note that for R < 10 the BLR is not yet

developed and in the end regions the ¯uid ¯ows by

continuity. Hence in these cases, the magnitude of Umax

and its dependence with a are similar to that observed

for Wmax (see Fig. 6(b)).

Relation (20) was veri®ed by numerical calculations

of dz carried out by recording the maximum value of the

temperature di�usion across z-direction. The variation

of dz along x-direction is about 10% and is indicated

with error bars in Fig. 5(b). In Fig. 5(b) numerically

Fig. 6. (a) Values of Wmax scaled with 1=Mw�a� for di�erent set of parameters and (b) Wmax, scaled with Raÿ4=7 versus a for data obtained

with Pr � 6:7. The dashed lines correspond to the theoretical prediction of Eq. (23).

Fig. 5. (a) The maximum x-velocity Umax, (b) scaled values of the end wall thermal boundary layer thickness dzRa1=4. The dashed lines

in (a) and (b) correspond, respectively, to Eqs. (19) and (20).
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calculated values of dz and scaled with Ra1=4 are plotted

versus a for cases corresponding to A � 1=7; A � 1=4

and Pr � 6:7. The solid line in Fig. 5(b) corresponds to

Eq. (20) (using the values of c0 and c1 obtained in the ®t

for Umax). The excellent agreement found with the nu-

merical results indicates that the order of magnitude

analysis made for dz and Umax is correct.

Unfortunately, no representative results could be

taken in the small-angle-range of the BLR because at the

Rayleigh number considered the unicellular regime

breaks down. At Ra � 3:47� 105, 15°6 a < 20°; Ra �
105; 12°6 a < 15° and Ra � 1:98� 105; 10°6 a < 15°
two oscillating Bernard-type counterclockwise cells ap-

pear at regions of order H near the ends of the cavity as

a consequence of the large temperature z-gradient at the

boundary layers.

6.2. Flow at the core region

We recall that in the BLR of horizontal cavities a

di�usionless stagnant region develops in the center of

the layer, a consequence of a vanishing buoyancy force

at the core. In inclined cavities a completely di�erent

scenario takes place. Even if K � 0, buoyant production

of vorticity exists in the core of the inclined cavity owing

to the presence of cross-stream temperature di�erence

and the z component of gravity. For Pr P 1 and A < 1,

the convection of vorticity in the core is negligible

compared to the di�usion and in this region Eq. (1) takes

the following form:

o3w
ox3
' ÿRa cos�a� oT

ox
: �21�

Thus, if the cavity is inclined, the vorticity produced by

buoyancy is di�used along x-direction and the stagnant,

di�usionless core is not developed. For K � 0 the

theoretical model yields an integrated version of the

production±di�usion balance expressed in Eq. (21).

Therefore, we considered it reasonable to study the

Ra!1 limit of the theoretical model to obtain an

analytical expression for the magnitude of axial velocity

at the core, Wmax. For Ra!1 (i.e., for r! r0) the

dominant term in the Laurent expansion of the velocity

pro®le around r � r0 (Eq. (14)) is proportional to

�r0 ÿ r�ÿ1
. Also, for r! r0 we have found the following

behavior of the function F �r�:

F �r� � 0:680A tan2�a� cos2=5�a�
a1=2

�r0 ÿ r�ÿ7=4

�O�r0 ÿ r�ÿ3=2
: �22�

At large Ra; F �r� � 1 and by virtue of Eq. (15),

K�r� � 1=F �r�. Also, for R > 10;K � Rÿ1 �O�Rÿ2�.
Neglecting the small contribution O�Rÿ2�, both equali-

ties yield: K � 1=F � 1=Rÿ1. Using Eq. (22) one obtains

an expression for �r0 ÿ r�ÿ1
in terms of Ra which can be

introduced in the maximum value of the pro®le (14) to

obtain the following prediction for the maximum axial

velocity at the core:

Wmax � cwRa4=7Mw�a�j=H �23�

with the constant cw � 0:138 and

Mw�a� � a1=2 cos3=5�a�
0:680 tan1=4�a�

� �4=7

: �24�

Numerous calculations were carried out in the range

R > 10 in order to validate the relationship (23).

Fig. 6(a) shows the numerically obtained values of Wmax

scaled with 1=Mw�a� versus Ra. Data for di�erent set of

parameters A and a and Pr are included. No informa-

tion about the Pr dependence is obtained from Eq. (23)

so numerical data corresponding to Pr � 0:7 and

Pr � 6:7 are presented in Fig. 6(a) in di�erent plots to

take into account this dependence. The dashed lines

correspond to Eq. (23). The numerical results con®rm

surprisingly well the theoretical prediction for Wmax.

Respectively for Pr � 0:7 and Pr � 6:7, the data for

di�erent values of a and A align to 0:129Ra4=7j=H and

0:158Ra4=7j=H and the theoretical prediction

�0:138Ra4=7j=H� coherently lies between both trends (we

recall that the model assumes Pr ' 1). Fig. 6(b) shows

values of WmaxRaÿ4=7 versus a for Pr � 6:7 and di�erent

values of Ra and A. The numerical results also agree

quite well with the theoretical modulation Mw�a� ex-

pressed in Eq. (24). For R > 10, the largest velocities at

the core correspond to a � 30°. This result coincides

with previous studies on this type of con®guration

[2,5,6].

In order to get some insight on the shape of the core

pro®les in the BLR of inclined cavities, let us consider

now the evolution of the temperature ®eld with Ra in the

range R > 10. Fig. 7 shows pictures of isotherms at

di�erent stages of the ¯ow for a < 90° and R > 10. For

R just above 10 (Fig. 7(a)) the isothermals become

parallel to the z-axis at the center of the cavity and so in

this region there is practically no di�usion of heat. If the

cavity was horizontally placed, this situation would co-

incide with the formation of a stagnant core (i.e., ad-

vection would also be absent) and therefore the

di�usionless temperature pro®le �oT=ox � cte:� would

remain valid at higher values Ra [16,23]. This result does

not apply in an inclined cavity. At the di�usionless re-

gion of the inclined cavity a balance is established be-

tween the advection of heat along x- and z-directions in

such way that, as Ra increases, the isotherms tilt beyond

the z-direction. At this stage (illustrated in Fig. 7(b)),

oT=oz changes its sign along the x-direction being pos-

itive in the center of the layer and negative near the

x � 0; 1 walls. Consequently, the advection along z-

direction tends to suppress the cross-stream temperature

di�erence at the center of the layer while continues to
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increase the temperature jump near the lateral walls at

x � 0; 1. As a result, the largest temperature x-gradient

in the core is concentrated in two boundary layers near

the lateral walls where most part of the heat is trans-

ported along the core. This can be seen in Fig. 7(d)

where the product wT is plotted against x for increasing

Ra. The temperature x-gradient continues to decrease in

the center of the layer and ®nally for Ra > RaI, a thermal

inversion occurs (i.e., oT=ox > 0 around x � 1=2) as may

be seen in Figs. 7(c) and 8(a). In the numerical calcula-

tions we observed that the change of sign of oT=ox oc-

curred at a ®xed value of the group R, which is

independent on a. Respectively for A � 1=7 and A � 1=4

it was found, RI � 75� 1 and 60� 1.

The cross-stream temperature di�erence at the core,

Hx, is a particularly important ¯ow quantity in inclined

cavities because it determines the intensity of buoyant

production (see Eq. (21)). It may also be used to estimate

the Nusselt number, as we shall see below. The depen-

dence of Hx with Ra may be seen in Fig. 9. As occurs in

the horizontal case [16,23], as Ra increases, the value of

Hx converges to an Ra-independent value that shall be

noted with Hx;f . We recorded the value of Ra at which

Hx varied in less than about 1% and found that for any

inclination the asymptotic value of Hx is reached at a

®xed value of the group R � ARa cos�a�=R0 (in partic-

ular, R � 33� 1 and 27� 1, respectively, for A � 1=7

and A � 1=4 and Pr � 6:7). On the other hand, the nu-

merical results indicate that the asymptotic value, Hx;f ,

scales with A4=7. Evidence is shown in Fig. 9 where the

values of Hx;f Aÿ4=7 are plotted against a. In conclusion,

the calculated values of Hx;f ®t within about 5% of error

to

Hx;f � MT �a�A4=7DT ;

where MT �a� � 1:06ÿ 0:72 cos2=7�a�: �25�

Attention has also been given to the position of the

maximum axial velocity because, apart from being an

important feature of the shape of the velocity pro®le, it

has been proved in previous works for horizontal con-

®gurations [1,23] that it provides a di�erent means of

monitoring the transition to the BLR. Let k be the dis-

tance from the maximum (minimum) of the axial

velocity in the core to the side wall at x � 0 �x � 1�. The

value of k may be estimated from an order of magnitude

analysis on the balance between di�usion and produc-

tion of vorticity in the core in Eq. (21). Owing to the

symmetry of the problem we shall consider only the

maximum near x � 0. Around x � k=H , the di�usion of

vorticity is (in dimensionless units)

o3w
ox3
' Wmax

k3

H 4

j
: �26�

Fig. 7. Isothermals for Pr � 6:7;A � 1=7, a � 20° and (a) Ra � 6:72� 104; (b) 1:01� 105 and (c) Ra � 3:47� 105. In (d) the product

wT evaluated at the center of the cavity, z � Aÿ1=2. The values of Ra� 10ÿ5 are indicated.
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By virtue of Eq. (21) the production of vorticity around

x � k=H has to be evaluated by considering the cross-

stream temperature gradient. An inspection of the

temperature x pro®les in Fig. 8(a) indicates that the es-

timation of oT=ox has to be adapted to the transfor-

mations of the temperature ®eld mentioned above. For

Ra < RaI �Ra < 3:47� 105 in Fig. 8) and for Ra > RaI

we propose the following estimations for the tempera-

ture x-gradient

oT
ox
' Hx

DT
for Ra < RaI; �27�

oT
ox
' Hx

2k
H
DT

for Ra > RaI: �28�

Note (see Fig. 8) that the estimation for Ra > RaI of

Eq. (28) takes into account that the temperature drop

along x is concentrated near the lateral walls, where the

axial advection is maxima. Introducing Eqs. (26) and

(27) or (28) into Eq. (21) and using Eq. (23), one obtains

the following trends for k:

k=H ' Raÿ1=7 cwMw�a�
cos�a��Hx=DT �

� �1=3

for Ra < RaI;

�29�

k=H ' Raÿ3=14 2cwMw�a�
cos�a��Hx=DT �

� �1=2

for Ra > RaI:

�30�

Numerically calculated values of k for Pr � 6:7 and

a � 20° and two di�erent aspect ratios, A � 1=7 and

A � 1=4, are presented in Fig. 10 against the Rayleigh

number. The arrows indicate the values of R at

Hx � Hx;f (within 1%) and at the occurrence of the

thermal inversion, R � RI. At the onset of the BLR

�R ' 10� the position of the maximum axial velocity

pro®le begins to shift towards the lateral walls from

its value at the conductive and transition regime

�k � 0:225�. Once Hx has reached an Ra-independent

value, it is observed a power-law decay of k � Raÿ1=7 as

predicted in Eq. (29). Then, for Ra > RaI the slope of the

calculated values of k changes to Raÿ3=14, as indicates

Eq. (30). The a dependence of k has been observed by

Fig. 8. Temperature and w-velocity x-pro®les at the center of the cavity, z � �2A�ÿ1
, for A � 1=7; Pr � 6:7; a � 20° and several values

of Ra.

Fig. 9. HxA4=7 versus a for several values of Ra, A and Pr � 6:7.

In the upper part of the ®gure, Hx versus Ra for Pr �
6:7; a � 20° and A � 1=7 (open circles), A � 1=4 (®lled circles).
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scaling the calculated values of k with Ra1=7 and Ra3=14.

The results are shown in Fig. 11. In this ®gure, the

number placed near each point is the value of the group

R. According to our predictions, for A � 1=7 points

inside the range 33 < R < RI � 75 and R > 75 should,

respectively, coincide with the dependencies in Eqs. (29)

and (30). The theoretical trends are drawn in solid lines

in Fig. 11 and evidence the quantitative agreement with

the numerically obtained values of k.

7. The Nusselt number

The transport of heat along the axis of the cavity,

represented by the Nusselt number, Nu, is not only an

useful quantity in the application ®eld but also a

parameter that characterizes the type of ¯ow regime.

The Nusselt number is de®ned as the ratio between the

heat transfer rate per unit width carried along z-direc-

tion and the heat that would be transferred by conduc-

tion in absence of ¯ow due to the imposed end wall

temperature di�erence. For adiabatic side walls Nu is

independent on the z coordinate

Nu �
Z 1

0

oT
oz

�
ÿ wT

�
dx at constant z: �31�

The calculation of Nu in slender inclined cavities with

axial heating was carried out in some previous works

[5,6,2,24]. In [24] we reported calculations of Nu for Ra

below the boundary layer limit �R < 10�. In this section

we shall concentrate our attention in the behavior of Nu

at the large Ra limit of inclined a < 90° cavities. For

R > 10 the axial temperature gradient in the core van-

ishes and the product w�x; z�T �x; z� only di�ers from zero

in the boundary layers close to the walls at x � 0; 1
(see Fig. 7(d)). Therefore, the Nusselt number may be

Fig. 11. Scaled values of k versus a for Pr � 6:7 and A � 1=7. The numbers beside each point are the values of R. The solid lines in (a)

and (b) are ®ts to the numerical data using, respectively, the a dependence of Eqs. (29) and (30). The constants for the ®ts are 0.71 for

Eq. (29) and 0.99 for Eq. (30).

Fig. 10. Values of k obtained for a � 20° and Pr � 6:7. Dashed

lines correspond to the predicted trends in Eqs. (29) and (30)

and arrows to the convergence of Hx and the occurrence of

thermal inversion (see text).
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estimated using a sort of mean value theorem for the

integral of the product wT

Nu ' WmaxHxdx=�jDT �; �32�
where dx is the thickness of the boundary layers where

heat is transported by the axial ¯ow. As argued by

Patterson and Imberger [12], as the ¯ow crosses the core

of long cavities (i.e., for Ra < Aÿ12) some heat is lost by

conduction outside the lateral boundary layers. Under

this situation (see [1]), the thickness dx has to be esti-

mated by considering the balance of heat advected along

z-direction O�WmaxDT=L� with the heat di�used in the x-

direction O�jDT=dx�. This yields

dx ' jL=Wmax� �1=2
: �33�

Introducing Eq. (33) into Eq. (32) and using the ex-

pression for Wmax (Eq. (23)) and for Hx;f (Eq. (25)), one

obtains the following relationship for Nu, which should

be valid for R > 10

Nu ' c1=2
w M1=2

w �a�MT �a�Ra2=7A1=14; �34�

where cw � 0:138 for the model's prediction of Eq. (23)

while for Pr � 6:7 and Pr � 0:7 the ®tted values are,

respectively, 0:158 and 0:129. In order to compare re-

sults from di�erent set of parameters let us de®ne the

reduced Nusselt number, NuR

NuR � Nu Mÿ1=2
w �a�Mÿ1

T �a�A2=7 cos2=7�a�ÿ � �35�
and rewrite Eq. (34) in terms of the group parameter R

NuR ' c1=2
w R2=7

0 R2=7A1=14: �36�
The prediction for the Nusselt number has been tested

using our numerical calculations and those captured

from the papers of Wirtz and Tzeng [5,6]. Fig. 12(a)

shows values of Nu scaled with Raÿ2=7 versus the incli-

nation angle. The solid line corresponds to the theoret-

ical trend in Eq. (34). Qualitative and also quantitative

agreements are quite good. As shown in previous works

[2,5,6,17,24], for R < 10 the angle of maximum heat

transfer increases with Ra inside the range 55°6 a6 65°.

As R increases above 10, the angle for maximum heat

transfer shifts progressively towards a ' 80°. This was

observed in [5,6,17] and it is also seen in the A � 1=7

data of Fig. 12(a). Eq. (34) predicts a maximum heat

transfer at a � 79°.

Fig. 12(b) shows the reduced Nusselt number NuR

(Eq. (35)) versus R for several sets of parameters with

Pr � 6:7. Results from the works of Wirtz and Tzeng

[5,6] corresponding to A � 1=2; a � 70° and Pr � 6:8 are

also included. The data align clearly to the predicted 2=7

power-law which is indicated in dashed lines. We have

included the prediction of Eq. (36) to explicit the

quantitative agreement. With respect to the dependence

Fig. 12. (a) Nusselt number scaled with Raÿ2=7Aÿ1=14 versus a for di�erent set of parameters. The symbols correspond to numerical

calculations carried out in this work for Pr � 6:7 and also extracted from [5,6] (for Pr � 6:8). The solid line is the a dependence ob-

tained from Eq. (34); (b) the reduced Nusselt number, Nur de®ned in Eq. (35), scaled with Aÿ1=14 and plotted versus R. In the graph, the

lowest dashed line is the theoretical trend in Eq. (36) and the upper one uses the same trend to ®t the data obtained from [5,6].
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of Nu with A, we have found that the calculated values

of NuRR
ÿ2=7 increase about 20% for 1=506A6 1=4 and

R > 10. When introducing the A1=14 dependence pre-

dicted in Eq. (36) this variation (always increasing with

A) is reduced to less than 7%. Nevertheless, it is likely to

occur that the A dependence of Nu for large Pr does not

exactly ®t to a power-law. In the case of horizontal

cavities for Pr > O�1� and large (®nite) Ra, an increase

of about 20% in the value of Nu was found in [15] for

0:16A6 0:025 and Ra � 6� 106. This increment was

attributed to the increasing enclosure ¯ow resistance

and, as reported in [15], could not be ®tted to a power-

law dependence. This is consistent with our observations

in inclined cavities.

8. Numerical solution of the ¯ow

A Chebyshev-collocation pseudo-spectral method

was used to solve the Navier±Stokes and heat equations

in vorticity-stream function variables in the closed ge-

ometry of Fig. 1. The spatial approximation in both

directions was done by expanding the ¯ow variables in

truncated series of Chebyshev polynomials [25]. The

time integration was obtained through an Adam±Bash-

forth, second-order Backward Euler scheme. The di�u-

sive terms are treated implicitly while the non-linear

terms are treated explicitly. For each time cycle, the

equation for the temperature at the next time step con-

sists of a Helmholtz-type equation which is solved by

means of a double diagonalization procedure for the

algebraic system that arises in the Chebyshev-colloca-

tion method [25]. The equations relating the stream

function and vorticity consist of a Stokes-type problem

which is solved by the in¯uence matrix technique [25].

This technique avoids the inconvenience of having two

boundary conditions for the stream function and none

for the vorticity and leads to the solution of several

Helmholtz equations with Dirichlet boundary con-

ditions. In most part of the calculations, the external

Rayleigh number was gradually increased and the initial

condition was the converged solution for the immedi-

ately lower Ra. In order to study the e�ect of the incli-

nation angle, in some cases the Rayleigh number was

®xed at a constant value while the inclination angle was

gradually varied. The number of collocation points used

in the calculations was varied to ensure accuracies of less

or about 1%. The size of the meshes varied from 31� 61

for the lowest aspect ratios and Rayleigh number con-

sidered �A � 1=4� to 35� 256 for the longest cavities

�A � 1=50�. Typical sizes of the time step were about

10ÿ4H 2=m for the conductive regime and 10ÿ5H 2=m for

the BLR. In order to arrive at the steady state, we have

to wait transitories of about L2=m in the conductive re-

gime which decreased like L=Wmax in the BLR (for in-

stance, 0:05L2=m for Ra � 4� 103).

9. Conclusions

We investigated the unicellular ¯ow in cavities whose

longest side is arbitrarily inclined and supports a tem-

perature di�erence between its ends. The conclusions of

this work may be applied to cavities with A < 1 and

Pr P O�1�. In particular we have veri®ed them by nu-

merical calculations done for 0:026A6 0:25 and

Pr � 0:7; 6:7. The dimensionless axial temperature

gradient at the core (K) was used to delimit the frontier

of the three ¯ow regimes: the conductive regime

�K � 1�, the transition regime �0 < K < 1� and the

boundary layer regime �K � 0�. If the cavity is not

horizontally placed �a 6� 90°� two completely di�erent

situations arise depending on the inclination angle. For

90° < a < 180° (¯uid heated from above) the axial

component of buoyancy tends to suppress the convec-

tion as Ra increases and the parameter K reaches a

minimum value at a certain Ra. Thus it may occur,

depending on a and A, that the ¯ow remains in the

conductive or the transition regime for arbitrary large

Ra. As an example, for A � 0:25 the conductive regime

should always hold for a > 120° and the BLR is not to

be observed if a > 93°. For 0° < a < 90° (¯uid heated

from below) the axial buoyancy ampli®es the convection

and K tends to vanish as Ra increases. We have found

that in this con®guration the governing parameter is

R � ARa cos�a�=R0 instead of A2Ra which governs the

type of ¯ow in the horizontal case [1]. The parameter K

decreases like K ' Rÿ1 and the frontiers of the ¯ow

regimes are found at R ' 1 and R ' 10. The frontiers

found by Boehrer for a long horizontal cavity

A2Ra ' 102 and A2Ra ' 104 are recovered as a increases

above approximately 85°. For smaller inclinations the

¯ow at the core is controlled by the axial component of

the buoyancy force.

In the investigation of the large Ra limit for heated-

from-below inclined cavities, it has been shown that a

careful order of magnitude analysis yields analytical

relationships which are in qualitative and quantitative

agreement with the numerical results. In the inclined

case, the ¯ow at the end wall boundary layers is gov-

erned by the same mechanism described for the hori-

zontal case (see [11,12]). The maximum x velocities are

proportional to Ra1=2 and located at thermal boundary

layers whose thickness is dz � Raÿ1=4. The main dif-

ferences with respect to the horizontal con®guration

are found in the core region owing to the existence of

the axial component of buoyancy. We found that the

maximum axial velocity at the core increases like Ra4=7.

This is faster than the proportionality observed for

a � 90° (from [1], Ra2=5). The shape of the core ¯ow in

the BLR is also greatly modi®ed if the cavity is in-

clined. Although, as occurs for a � 90°, the positions

of the maximum and minimum of the axial velocity

shift towards the side walls as Ra increases, if the
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cavity is inclined, no stagnant core is formed in the

center of the layer but rather a region of (approxi-

mately) constant shear. Also, as Ra increases the cross-

stream temperature gradient does not reach an as-

ymptotic constant value at the core as occurs for

a � 90° (see [16,3]). Instead, it decreases and changes

its sign at the center of the layer while continues to

increase near the lateral walls at x � f0; 1g. This leads

to the formation of two lateral boundary layers where

most part of the cross-stream temperature jump and

the heat transport along the core takes place. The

lateral boundary layer thickness is determined by a

conductive±advective balance of heat (see [1]). By es-

timating the rate at which heat is advected inside the

lateral boundary layers, an analytical expression for

the Nusselt number has been obtained. This relation-

ship predicts Nu � Ra2=7 and has been con®rmed by

our numerical calculations and those reported in pre-

vious works [5,6]. The 2=7 exponent is also larger than

those typically observed in the horizontal case (�1/5)

[20,15]. Interesting enough is that the 2=7 power-law is

very close to the exponents found in the empirical ®ts

to Nu � Ran obtained in a related con®guration: in-

clined cavities with A > 1. In [18] and [19], respectively,

n � 0:29 and n � 0:275. Also in [18] it was mentioned

that results for Nu at di�erent angles could be ®tted

with the same exponent for Ra.

To conclude, it is important to mention how the

results of this work may be altered by a third dimen-

sion in the cavity. As observed in previous works [26]

for Pr > O�1� and a < 90°, thermal three-dimensional

instabilities may develop if the third dimension of the

cavity is typically more than 2H , but these instabilities

do not appear if it is made shorter. We have carried

out calculations in three-dimensional cavities with

nearly squared cross-section which shall be reported

elsewhere. The ¯ow is essentially two-dimensional in

the core and the conclusions of the present work are

applicable. An important conclusion is that if one

calculates the value of R0 in terms of the third di-

mension aspect ratio and uses it to rede®ne the pa-

rameter R, the frontiers of the ¯ow regimes are found

at similar values of the rescaled group parameter:

R � 1 and 10.
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